p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.104D4, (C2×D4)⋊50D4, (C2×Q8)⋊37D4, D4.41(C2×D4), C4⋊C4.7C23, (C2×C8).8C23, Q8.41(C2×D4), D4⋊D4⋊13C2, C4.83C22≀C2, (C2×D8)⋊14C22, C22⋊C8⋊4C22, C4.42(C22×D4), D4.7D4⋊13C2, D4⋊C4⋊9C22, C4⋊D4⋊51C22, C24.4C4⋊4C2, (C2×C4).224C24, (C2×Q16)⋊13C22, (C2×SD16)⋊3C22, (C2×D4).27C23, (C22×C4).715D4, C23.230(C2×D4), C22⋊Q8⋊63C22, (C2×Q8).20C23, C22.19C24⋊4C2, Q8⋊C4⋊12C22, C22.59C22≀C2, C23.38D4⋊3C2, C23.37D4⋊3C2, C2.7(D8⋊C22), (C22×C4).962C23, (C23×C4).544C22, C22.484(C22×D4), C42⋊C2.96C22, (C22×D4).564C22, (C2×M4(2)).40C22, (C22×Q8).468C22, (C2×C8⋊C22)⋊6C2, (C22×C4○D4)⋊9C2, (C2×C8.C22)⋊6C2, C2.42(C2×C22≀C2), (C2×C4).1213(C2×D4), (C2×C4○D4).100C22, SmallGroup(128,1737)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 740 in 379 conjugacy classes, 108 normal (28 characteristic)
C1, C2, C2 [×2], C2 [×9], C4 [×2], C4 [×2], C4 [×9], C22, C22 [×2], C22 [×31], C8 [×4], C2×C4 [×2], C2×C4 [×6], C2×C4 [×37], D4 [×4], D4 [×30], Q8 [×4], Q8 [×8], C23, C23 [×2], C23 [×15], C42, C22⋊C4 [×5], C4⋊C4 [×2], C4⋊C4 [×2], C2×C8 [×4], M4(2) [×4], D8 [×4], SD16 [×8], Q16 [×4], C22×C4 [×2], C22×C4 [×4], C22×C4 [×18], C2×D4, C2×D4 [×6], C2×D4 [×18], C2×Q8, C2×Q8 [×6], C2×Q8 [×3], C4○D4 [×36], C24, C24, C22⋊C8 [×4], D4⋊C4 [×4], Q8⋊C4 [×4], C42⋊C2, C4×D4 [×2], C22≀C2, C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4, C2×M4(2) [×2], C2×D8 [×2], C2×SD16 [×4], C2×Q16 [×2], C8⋊C22 [×4], C8.C22 [×4], C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4 [×4], C2×C4○D4 [×10], C24.4C4, C23.37D4, C23.38D4, D4⋊D4 [×4], D4.7D4 [×4], C22.19C24, C2×C8⋊C22, C2×C8.C22, C22×C4○D4, C24.104D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×12], C23 [×15], C2×D4 [×18], C24, C22≀C2 [×4], C22×D4 [×3], C2×C22≀C2, D8⋊C22 [×2], C24.104D4
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, eae-1=ac=ca, ad=da, faf=acd, bc=cb, ebe-1=fbf=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=de3 >
(2 25)(4 27)(6 29)(8 31)(9 20)(10 14)(11 22)(12 16)(13 24)(15 18)(17 21)(19 23)
(1 32)(2 29)(3 26)(4 31)(5 28)(6 25)(7 30)(8 27)(9 20)(10 17)(11 22)(12 19)(13 24)(14 21)(15 18)(16 23)
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(8 16)(17 29)(18 28)(19 27)(20 26)(21 25)(22 32)(23 31)(24 30)
G:=sub<Sym(32)| (2,25)(4,27)(6,29)(8,31)(9,20)(10,14)(11,22)(12,16)(13,24)(15,18)(17,21)(19,23), (1,32)(2,29)(3,26)(4,31)(5,28)(6,25)(7,30)(8,27)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(8,16)(17,29)(18,28)(19,27)(20,26)(21,25)(22,32)(23,31)(24,30)>;
G:=Group( (2,25)(4,27)(6,29)(8,31)(9,20)(10,14)(11,22)(12,16)(13,24)(15,18)(17,21)(19,23), (1,32)(2,29)(3,26)(4,31)(5,28)(6,25)(7,30)(8,27)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(8,16)(17,29)(18,28)(19,27)(20,26)(21,25)(22,32)(23,31)(24,30) );
G=PermutationGroup([(2,25),(4,27),(6,29),(8,31),(9,20),(10,14),(11,22),(12,16),(13,24),(15,18),(17,21),(19,23)], [(1,32),(2,29),(3,26),(4,31),(5,28),(6,25),(7,30),(8,27),(9,20),(10,17),(11,22),(12,19),(13,24),(14,21),(15,18),(16,23)], [(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(8,16),(17,29),(18,28),(19,27),(20,26),(21,25),(22,32),(23,31),(24,30)])
Matrix representation ►G ⊆ GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 16 | 16 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 16 |
0 | 0 | 0 | 16 | 16 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 10 |
0 | 0 | 0 | 13 | 6 | 0 |
0 | 0 | 0 | 8 | 4 | 0 |
0 | 0 | 9 | 0 | 0 | 13 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 15 | 0 | 0 | 16 |
0 | 0 | 0 | 15 | 16 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,16,1,0,0,0,1,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,16,1,0,0,0,16,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,4,0,0,9,0,0,0,13,8,0,0,0,0,6,4,0,0,0,10,0,0,13],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,1,15,0,0,0,1,0,0,15,0,0,0,0,0,16,0,0,0,0,16,0] >;
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2K | 2L | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 8 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D8⋊C22 |
kernel | C24.104D4 | C24.4C4 | C23.37D4 | C23.38D4 | D4⋊D4 | D4.7D4 | C22.19C24 | C2×C8⋊C22 | C2×C8.C22 | C22×C4○D4 | C22×C4 | C2×D4 | C2×Q8 | C24 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 3 | 4 | 4 | 1 | 4 |
In GAP, Magma, Sage, TeX
C_2^4._{104}D_4
% in TeX
G:=Group("C2^4.104D4");
// GroupNames label
G:=SmallGroup(128,1737);
// by ID
G=gap.SmallGroup(128,1737);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,352,2019,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f=a*c*d,b*c=c*b,e*b*e^-1=f*b*f=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=d*e^3>;
// generators/relations